
F. Bomarius and H. Iida (Eds.): PROFES 2004, LNCS 3009, pp. 146–158, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Definition and Empirical Validation of Metrics for
Software Process Models

Félix García, Francisco Ruiz, and Mario Piattini

Alarcos Research Group, University of Castilla-La Mancha, Paseo de la Universidad, 4
13071 Ciudad Real, Spain

{Felix.Garcia, Francisco.RuizG, Mario.Piattini}@uclm.es,
alarcos.inf-cr.uclm.es/english/

Abstract. Software companies are becoming more and more concerned about
software process improvement, when they are promoting the improvement of
the final products. One of the main reason of the growing interest in software
metrics has been the perception that software metrics are necessary for soft-
ware process improvement. Measurement is essential for understanding, defin-
ing, managing and controlling the software development and maintenance
processes and it is not possible to characterize the various aspects of develop-
ment in a quantitative way without having a deep understanding of software
development activities and their relationships. In this paper a representative set
of metrics for software process models is presented in order to evaluate the in-
fluence of the software process models complexity in their quality. These met-
rics are focused on the main elements included in a model of software proc-
esses, and may provide the quantitative base necessary to evaluate the changes
in the software processes in companies with high maturity levels. To demon-
strate the practical utility of the metrics proposed at model level, an experiment
has been achieved which has allowed us to obtain some conclusions about the
influence of the metrics proposed on two sub-characteristics of the maintain-
ability: understandability and modifiability, which besides confirm the results
of a subjective experiment previously performed.

1 Introduction

There is a direct correlation between the quality of the process and the quality of the
resulting software products and for this reason companies are becoming more and
more concerned about software process improvement, when they are promoting the
improvement of the final products. To support the software process evaluation and
improvement, a great variety of initiatives have arisen establishing reference frame-
works. Among these initiatives, of special note are CMM [17], CMMI [18] and the
ISO 15504 [11]. Among the above-mentioned improvement initiatives, CMMI (Ca-
pability Maturity Model Integration) stands out as being especially important. Within
the context of CMMI, the company should continuously understand, control and
improve its processes, in order to reach the aims of each level of maturity. As a result

Definition and Empirical Validation of Metrics for Software Process Models 147

of effective and efficient processes, a company will, in return, receive high quality
products that satisfy both the needs of the client and of the company itself.

One of the main reason of the growing interest in software metrics has been the
perception that software metrics are necessary for software process improvement [7].
Measurement is essential for understanding, defining, managing and controlling the
software development and maintenance processes and it is not possible to characterize
the various aspects of development in a quantitative way without having a deep un-
derstanding of software development activities and their relationships [15].

Therefore, in order to provide the a quantitative basis for the improvement of
software process it is necessary the measurement of the process, but before it is nec-
essary to know the elements involved. For this reason the issue of process modelling
has received growing attention in the software community during last years. The
process model is seen as the starting point to analyse, improve and enact the process,
but the need of strict coupling between process modelling and process measurement
has not yet clearly emerge [13]. We have treated this issue in previous works [8;9].

In this paper a representative set of metrics for software process models is pre-
sented in order to evaluate the influence of the complexity in the software process
models in their maintainability. These metrics are focused on the main elements in-
cluded in a model of software processes, and may provide the quantitative base nec-
essary to evaluate the changes in the software processes in companies with high ma-
turity levels.

To demonstrate the practical utility of the metrics proposed at model level an ex-
periment has been carried out which has allowed us to obtain some conclusions about
the influence of the metrics proposed on two sub-characteristics of the maintainabil-
ity: understandability and modifiability.

Firstly, we present a set of representative metrics for the evaluation of software
process models and an example of calculation. In Section 3 the empirical validation
of the metrics proposed at model level is presented. Finally, some conclusions and
further works are outlined.

2 Proposal of Metrics for Software Process Models

Research on the software process evaluation has been focused in the collection of
project data to obtain throughput, efficiency and productivity metrics and for this
reason explicit metrics on software process models have not been defined.

The study of the possible influence of the complexity of software process models
in their execution (enactment) could be very useful. For this reason the first step is the
definition of a collection of metrics in order to characterise the software process
model. The main objective to be achieved is the development of a empirical study to
demonstrate the influence of the metrics proposed (which are applied on the attributes
of software process models) on the maintainability of software process models. These
metrics are indicators of a software process model structural complexity, and they
could be every useful, taking into account that a software process model with high
degree of complexity will be much more difficult to change, and this affects to their

148 F. García, F. Ruiz, and M. Piattini

maintainability. This affirmation is based on the theoretical basis for developing
quantitative models relating to structural properties and external quality attributes
provided by [4] which is illustrated in Figure 1. This basis could be applied to the
software process in the same way they are applied to software artifacts. Software
process models hardly maintainable affect to the execution of projects (more expen-
sive in resources and schedule) and to the final quality of the software products ob-
tained.

Structural
Properties
(eg. of a

software process
model)

UnderstandabilityCognitive
Complexity

affects

indicates

affects

afecta

External Quality Attributes

Maintainability Usability

PortabilityEfficience

Functionality Reliability
affects

Fig. 1. Relationship between structural properties and external quality attributes

The metrics have been defined following the SPEM terminology [19], but they can
be directly applied to other process modeling languages. The conceptual model of
SPEM is based on the idea that a software development process consists of the col-
laboration between abstract and active entities, referred to as process roles, that carry
out operations, called activities, on tangible entities, called work products. The basis
of software processes consists of the interaction or collaboration of multiple roles
through the exchange of work products and triggering the execution , or enactment of
certain activities. The aim of a process is to bring a set of work products to a well-
defined state.

SPEM has not a graphical notation by itself, but basic UML diagrams can be used
to present different perspectives of a software process model. In particular, the fol-
lowing UML notations are useful: Class diagram, Package diagram, Activity diagram,
Use case diagram and Sequence diagram. Figure 2 shows an example of a simplified
software process model which belongs to the Rational Unified Process [12]. For the
graphical representation of the model the Activity Diagram notation and the stereo-
types which represent the SPEM constructors has been used.

As we can observe in Figure2, using UML Activity diagrams it is possible to rep-
resent a view of the software process in which the different activities, their prece-
dence relationships, the work products consumed or produced and the responsible
roles are included.

The metrics have been defined examining the key software process constructors of
the SPEM metamodel and they could be classified as:

− Model Level Metrics. They are applied in order to measure the structural

complexity of the overall software process model. These metrics are repre
sented in Table 1 and an example of calculation of the metrics for the software
process model represented in the Figure 2 is shown in Table 2.

Definition and Empirical Validation of Metrics for Software Process Models 149

Find Actors

and Use Cases

 Prioritize
 Use Cases

 Structure the
 Use Case

Model

Description
of the

Architecture

Glossary

Use Case
Detailed

Architect

Additional
Requirements

System
Analyst

Domain Model

List of
Characteristics

 Detail a
Use Case

 Prototype
User

Interface

Use Case Model

User Interface
Designer

Use Case
Specifier

User Interface
Prototype

Steps:
- Find the Actors
- Find the Use Cases
- Describe briefly each Use Case
- Description of the Use Case Model

Steps:
- Identification of descriptions of shared
functionality
- Identification of descriptions of optional
or additional functionality
- Identification of other relationships
b t

Steps:
- Create the logical design of the user interface
- Creation of the design and a physical prototype of the user interface

Steps:
- Structuration of the use cases description
- Formalization of the use cases description

No Steps

Fig. 2. Example of a Software Process Model represented with SPEM

− Fundamental Element Metrics. They evaluate the structural complexity of

the main elements of the software process model: Activity, Work Product and
Process Role. The definition of these metrics is presented in [9].

3 Empirical Validation of the Model Level Metrics

In order to prove the practical utility of the metrics it is necessary to run out empirical
studies. In this section we describe an experiment we have carried out to empirically
validate the proposed measures as early maintainability indicators. We have followed
some suggestions provided in [20][14] [5] and [6] on how to perform controlled ex-
periments and have used (with only minor changes) the format proposed in [20] to
describe it.

We performed a previous controlled experiment [10], pursuing a similar objective.
In it, as in this one, the independent variable is the software process model structural
complexity. In the previous experiment the dependent variables were three maintain-
ability sub-characteristics (understandability, analysability and modifiability) meas-
ured by means of user ratings on a scale composed of seven linguistic labels (from
extremely easy to extremely difficult for each sub-characteristic). Even though the
results obtained in the previous experiment reflect that several of the model level

150 F. García, F. Ruiz, and M. Piattini

Table 1. Model Level Metrics

Metric Definition
NA(PM) Number of Activities of the software process model

NWP(PM) Number of Work Products of the software process model

NPR(PM) Number of Roles which participate in the process

NDWPIn(PM) Number of input dependences of the Work Products with the Ac-
tivities in the process

NDWPOut(PM) Number of output dependences of the Work Products with the Ac-
tivities in the process

NDWP(PM) Number of dependences between Work Products and Activities
)()()(MPNDWPOutMPNDWPInPMNDWP +=

NDA(PM) Number of precedence dependences between Activities

NCA(PM) Activity Coupling in the process model.

)(

)(
)(

PMNDA

PMNA
PMNCA =

RDWPIn(PM) Ratio between input dependences of Work Products with Activi-
ties and total number of dependences of Work Products with Activi-

ties

)(

)(
)(

PMNDWP

PMNDWPIn
PMRDWPIn =

RDWPOut(PM) Ratio between output dependences of Work Products with Activi-
ties and total number of dependences of Work Products with Activi-

ties

)(

)(
)(

PMNDWP

PMNDWPOut
PMRDWPOut =

RWPA(PM) Ratio of Work Products and Activities. Average of the work prod-
ucts and the activities of the process model.

)(

)(
)(

PMNA

PMNWP
PMRWPA =

RRPA(PM) Ratio of Process Roles and Activities

)(

)(
)(

MPNA

MPNRP
MPRRPA =

Table 2. Values of Model Level Metrics

Metric Value Metric Value
NA(PM) 5 NDA(PM) 4

NWP(PM) 8 NCA(PM) 5/4= 1,25
NPR(PM) 4 RDWPIn(PM) 13/18=0,722

NDWPIn(PM) 13 RDWPOut(PM) 5/18=0,278
NDWPOut(PM) 5 RWPA(PM) 8/5=1,6

NDWP(PM) 18 RRPA(PM) 4/5= 0,8

Definition and Empirical Validation of Metrics for Software Process Models 151

metrics (NA, NWP, NDWPIn, NDWPOut, NDWP y NDA) were highly related to-
software process models maintainability, we are aware that the way we choose to
measure the dependent variable was subjective and relies solely on judgment of the
users, which may have biased the results. Therefore, we decided to carry out another
experiment measuring the dependent variable in a more objective way. This experi-
ment is presented in the following subsections.

3.1 Definition

Using the GQM template [1], for goal definition, the experiment goal is defined as
follows:
Analyse Software process models (SPM) structural complexity metrics
For the purpose of Evaluating
With respect to their capability of being used as software process model main-

tainability indicators
From the point of view of Software Process Analysts
In the context of Software engineers of a company for the development and main-

tenance of information systems.

3.2 Planning

After the definition of the experiments -why the experiment is conducted-, the
planning took place. The planning prepares for how the experiment is conducted,
including the following activities:

- Context selection. The context of the experiment is a group of professionals of a

software company, and hence the experiment is run on-line (in an industrial soft-
ware development environment). The subjects have been thirty-one software
engineers of the Cronos Iberica Consulting, company dedicated to the develop-
ment and maintenance of software for information systems. The experiment is
specific since it focuses on SPM structural complexity metrics. The ability to
generalise from this specific context is further elaborated below when we discuss
threats to the external validity of the experiment. The experiment addresses a real
problem, i.e., which indicators can be used to assess the maintainability of SPM?
To this end it investigates the correlation between metrics and maintainability.

- Selection of subjects. The subjects have been chosen for convenience, i.e., the
subjects are professionals of a software company who have wide experience and
knowledge in software product modelling (UML, databases, etc.), but they have
not experience or knowledge in the conceptual modelling of SPM.

- Variables selection. The independent variable is the SPM structural complexity.
The dependent variable is SPM maintainability.

- Instrumentation. The objects have been 18 SPM belonging to different stan-
dards and methodologies. The independent variable has been measured through
the metrics proposed at process model level (see section 2). The dependent vari-

152 F. García, F. Ruiz, and M. Piattini

ables have been measured by the time the subjects spent answering the questions
of the first section related with the understandability of each model (understand-
ability time) and by the time subjects spent carrying out the tasks required in the
second section of the experiment (modifiability time). Our assumption here is
that, the faster a class diagram can be understood and modified, the easier it is to
maintain.

- Hypothesis formulation. We wish to test the following two set of hypotheses:
1) Null hypothesis, H0e: There is no significant correlation between structural

complexity metrics (NA, NWP, NPR, NDA, NDWP, NDWPIn, NDWPOut,
NCA, RDWPIn, RDWPOut, RWPA, RRPA) and the understandability time.

2) Alternative hypothesis, H1e: There is significant correlation between struc-
tural complexity metrics and the understandability time.

3) Null hypothesis, H0m: There is no significant correlation between structural
complexity metrics and the modifiability time.

4) Alternative hypothesis, H1m: There is significant correlation between struc-
tural complexity metrics and the modifiability time.

- Experiment design. We selected a within-subject design experiment, i.e., all the
tests (experimental tasks) have had to be solved by each of the subjects. The sub-
jects were given the tests in different order.

Table 3. Metric values for each class diagram.

Model NA NWP NPR NDWPIn NDWPOut NDWP NDA NCA RDWPIn RDWPOut RWPA RRPA
1 6 6 3 5 6 11 6 1,000 0,455 0,545 1,000 0,500
2 5 6 4 5 5 10 4 1,250 0,500 0,500 1,200 0,800
3 2 13 2 12 3 15 1 2,000 0,800 0,200 6,500 1,000
4 9 25 9 25 21 46 11 0,818 0,543 0,457 2,778 1,000
5 5 6 4 5 5 10 8 0,625 0,500 0,500 1,200 0,800
6 4 11 4 14 9 23 3 1,333 0,609 0,391 2,750 1,000
7 8 17 1 15 11 26 9 0,889 0,577 0,423 2,125 0,125
8 5 8 4 13 5 18 4 1,250 0,722 0,278 1,600 0,800
9 7 12 1 12 11 23 6 1,167 0,522 0,478 1,714 0,143
10 24 37 10 72 40 112 24 1,000 0,643 0,357 1,542 0,417
11 7 12 5 12 11 23 6 1,167 0,522 0,478 1,714 0,714
12 2 8 3 6 4 10 1 2,000 0,600 0,400 4,000 1,500
13 3 6 1 8 3 11 4 0,750 0,727 0,273 2,000 0,333
14 3 5 7 5 3 8 2 1,500 0,625 0,375 1,667 2,333
15 4 9 1 9 7 16 6 0,667 0,563 0,438 2,250 0,250
16 8 6 4 9 9 18 7 1,143 0,500 0,500 0,750 0,500
17 4 24 1 20 11 31 3 1,333 0,645 0,355 6,000 0,250
18 5 21 3 21 11 32 4 1,250 0,656 0,344 4,200 0,600

3.3 Operation

It is in this phase where measurements are collected, including the following activi-
ties:

− Preparation. Subjects were given an intensive training session before the ex-

periment took place. However, the subjects were not aware of what aspects we
intended to study. Neither were they aware of the actual hypothesis stated. We
prepared the material we handed to the subjects, consisting of eighteen SPM and

Definition and Empirical Validation of Metrics for Software Process Models 153

one example solved. These models were related with different universes of dis-
course but they were general enough to be understood by the subjects. The struc-
tural complexity of each diagram is different, because as table 3 shows, the val-
ues of the metrics are different for each model.

Each diagram had an enclosed test (see appendix A) that included two sec-
tions: the first composed by five questions related with the model and the second
composed by different steps to perform for the modification of the model. Each
subject had to answer the questions of the section 1 and perform the modifica-
tions specified in the section 2. For each section the subject had to specify the
starting and ending times. The difference between the two times in the first sec-
tion is that we call understandability time (expressed in minutes and seconds) and
the time difference in the second section is called the modifiability time. The
modifications to each SPM were similar, including adding and deleting of activi-
ties, work products, roles and their dependences.

− Execution. The subjects were given all the materials described in the previous
paragraph. We explained how to do the tests. We allowed one week to carry out
the experiment, i.e., each subject had to do the test alone, and could use unlimited
time to solve it. We collected all the data including the times of understanding
and modification, the answers of the first section and the original models modi-
fied as a result of the second section.

− Data Validation. Once the data was collected, we have controlled if the tests
were complete and if the modifications had been done correctly. We have dis-
carded the tests of two subjects because they were incomplete. Therefore, we
have taken into account the responses of 29 subjects.

Table 4. Spearman´s correlation coefficients between metrics and understandability and modi-
fiability time

Metric Spearman´correlation
coefficients understand-

ability time

Spearman´correlation coeffi-
cients modifiability time

NA(PM) 0,604 p=0,008 0,171 p=0,496
NWP(PM) 0,694 P=0,001 0,364 p=0,138
NPR(PM) 0,211 p= 0,402 0,348 p=0,157

NDWPIn(PM) 0,740 p=0,000 0,383 p=0,117
NDWPOut(PM) 0,747 p=0,000 0,212 p=0,398

NDWP(PM) 0,772 p=0,000 0,338 p=0,170
NDA(PM) 0,529 p=0,024 0,060 p=0,814
NCA(PM) -0,275 p=0,269 0,151 p=0,549

RDWPIn(PM) 0,142 p=0,573 0,324 p=0,190
RDWPOut(PM) -0,142 p=0,573 -0,324 p=0,190

RWPA(PM) 0,150 p=0,554 0,117 p=0,644
RRPA(PM) -0,304 p=0,220 0,101 p=0,691

154 F. García, F. Ruiz, and M. Piattini

3.4 Analysis and Interpretation

We had the metric values calculated for each SPM (see table 3), and we have calcu-
lated the mean of the understandability and modifiability time. So this is the data we
want to analyse to test the hypotheses stated above. We have applied the Kolmo-
gorov-Smirnov test to ascertain if the distribution of the data collected was normal.
As the data have been non-normal we have decided to use a non-parametric test like
Spearman’s correlation coefficient, with a level of significance α = 0.05, correlating
each of the metrics separately with understandability time and with modifiability time
(see table 4).

For a sample size of 18 (mean values for each diagram) and α = 0.05, the Spear-
man cutoff for accepting H0e and H0m is 0,4684 [21]. Because the computed Spear-
man's correlation coefficients for the understanding time (see table 4) for the metrics
NA, NWP, NDWPIn, NDWPOut, NDWP and NDA are above the cutoff, and the p-
value < 0,05, the null hypothesis H0e, is rejected. Hence, we can conclude that there is
a significant correlation between these metrics and the understandability time. Re-
spect to modifiability time all the correlation values are below the cutoff and for this
reason there is not correlation with the metrics defined. We think these results are
produced due to that the requested modifications in the different diagrams were simi-
lar and the subjects had previously answered the questions related with the under-
standability. So in future experiments we have to focus specially on the influence of
the metrics on the modifiability time.

3.5 Validity Evaluation

We will discuss the various issues that threaten the validity of the empirical study and
how we attempted to alleviate them:

- Threats to conclusion validity. The only issue that could affect the statistical

validity of this study is the size of the sample data (522 values, 18 models and 29
subjects), that perhaps are not enough for both parametric and non-parametric
statistic test [3]. We are aware of this, so we will consider the results of the ex-
periment as preliminary findings.

- Threats to Construct Validity. The dependent variables we used are under-
standability and modifiability time, so we consider these variables constructively
valid.

- Threats to Internal Validity. Seeing the results of the experiment we can con-
clude that empirical evidence of the existing relationship between the independ-
ent and the dependent variables exists. We have tackled different aspects that
could threaten the internal validity of the study, such as: differences among sub-
jects, knowledge of the universe of discourse among SPM, precision in the time
values, learning effects, fatigue effects, persistence effects and subject motiva-
tion. The only issue which could affect internal validity was the fatigue effects
because the average duration of the experiment was two hours and twenty-four

Definition and Empirical Validation of Metrics for Software Process Models 155

minutes. But in this experiment we think this does not affect because subjects are
professionals. In future empirical studies we have to consider to plan experiments
with more reduced duration if the subjects are students.

- Threats to External Validity. Three threats to external validity have been iden-
tified which could limit the realism of the experiment [16] and the ability to gen-
eralize the research results to the population under study:
 Materials and tasks used. In the experiment, we have used software process

models based on standards and methodologies found in the bibliography and
tasks representative of real cases, but more empirical studies, using real
software process models from software companies, must be carried out.

 Subjects. The experiment has been performed by professional subjects
which eases the generalization of the results.

 Environment. The experiment was performed in the company but the tasks
had to be done by using pen and paper. In future experiments we could con-
sider the use of software tools to perform the activities required in order to
provide a more realistic environment.

4 Conclusions and Future Work

In this work a set of representative metrics have been proposed in order to evaluate
the influence of the complexity in the software process models in their quality. These
metrics are focused on the main elements included in a model of software processes,
and may provide the quantitative base necessary to evaluate the changes in the soft-
ware processes in companies with high maturity levels.

In order to evaluate the relationship between the structural complexity of the soft-
ware process models, measured through the metrics proposed, and their maintainabil-
ity we have carried out an experiment to select the metrics related with the time nec-
essary to understand and modify a software process model. This experiment has al-
lowed us to obtain some conclusions about the influence of the metrics proposed at
model level in the maintainability of the software process models through two of its
sub-characteristics (understandability and modifiability). As a result of these experi-
ments performed we could conclude that the metrics NA, NWP, NDWPIn,
NDWPOut, NDWP and NDA are good understandability indicators, however we
cannot say the same about the metrics NPR, NCA, RDWPIn, RDWPOut y RWPA.
These results confirm part of the results of one previous subjective experiment [10].
However with this experiment we have not demonstrated the relationship between the
metrics and the modifiability. We have to conduct new experiments related with the
modification of the models to confirm or discard these results.

Although the results obtained in these experiments are good respect to the under-
standing, we can not consider them like definitive results. It is necessary elaborate
new experiments centered in the evaluation of concrete metrics we consider relevant
and that in this experiment seem not to be correlated like the metric NCA and NPR.
According to the issues previously identified, the lines for improvement for future
studies, we can point out the following:

156 F. García, F. Ruiz, and M. Piattini

− Development of replicas [2] to confirm the results obtained. In this replicas
we could also consider the perception of the participants about the under-
standability and modifiability of the process models in order to detect possible
relationships among this perception (measured in a subjective way), the met-
rics, and the times employed to understand and modify he models.

− Carrying out a new experiment centered in the evaluation of concrete metrics
we consider relevant (NRP, NCA) and that according the previous experi-
ments performed not to seem be correlated with the maintainability of soft-
ware process models.

− Carrying out case studies using real software process models of companies.
− Consideration of other views related with the modelling of software processes,

like for example roles and their responsibilities on work products, in order to
define and validate new possible metrics.

Acknowledgements. This work has been partially funded by the TAMANSI project
financed by “Consejería de Ciencia y Tecnología, Junta de Comunidades de Castilla-
La Mancha” of Spain (project reference PBC-02-001) and by the MAS project par-
tially supported by “Dirección General de Investigación of the Ministerio de Ciencia
y Tecnología” (TIC 2003-02737-C02-02).

References

1. Basili, V. and Rombach H. The TAME project: towards improvement-oriented software
environments. IEEE Transactions on Software Engineering, 14(6), (1988), 728-738.

2. Basili, V., Shull, F. and Lanubile, F. Building Knowledge through Families of Experi-
ments. IEEE Transactions on Software Engineering, 25(4), (1999), 435-437.

3. Briand, L., El Emam, K. and Morasca, S. Theoretical and empirical validation of soft-
ware product measures. Technical Report ISERN-95-03, International Software Engi-
neering Research Network (1995).

4. Briand., L., Wüst, J. and Lounis, H. A. Comprehensive Investigation of Quality Factors
in Object-Oriented Designs: an Industrial Case Study. In Technical Report ISERN-98-
29, International Software Engineering Research Network (1998).

5. Briand L., Arisholm S., Counsell F., Houdek F. and Thévenod-Fosse P. Empirical Stud-
ies of Object-Oriented Artifacts, Methods, and Processes: State of the Art and Future Di-
rections. Empirical Software Engineering, 4(4), (1999), 387-404.

6. Calero, C., Piattini, M. and Genero, M.: Empirical Validation of referential metrics.
Information Software and Technology”. Special Issue on Controlled Experiments in
Software Technology. Vol.43, Nº 15 (2001).

7. Fenton, N.: Metrics for Software Process Improvement. Software Process Improvement:
Metrics, Measurement and Process Modelling. Haug, M., Olsen, E. W. and Bergman, L
(eds). Springer (2001), 34-55.

8. García, F., Ruiz, F. and Piattini, M. Metamodeling and Measurement for the Software
Process Improvement. Proceedings of ACS/IEEE International Conference on Computer
Systems and Applications (AICCSA’03). Tunis (Tunisia). 14-18 July (2003).

Definition and Empirical Validation of Metrics for Software Process Models 157

9. García, F., Ruiz, F., Cruz, J.A., Piattini, M. Integrated Measurement for the Evaluation
and Improvement of Software Processes. 9th European Workshop on Software Process
Technology (EWSPT’9). Lecture Notes in Computer Science. Helsinki (Finland), 1-2
September (2003).

10. García, F., Ruiz, F. and Piattini, M. Proposal of Metrics for Software Process Models.
Accepted for publication in Software Measurement European Forum 2004, Rome, 28-30
January, 2004.

11. ISO/IEC: ISO IEC 15504 TR2:1998, part 2: A reference model for processes and proc-
ess capability, (1998).

12. Jacobson, I, Booch, G. and Rumbaugh, J. The Unified Software Development Process.
Addison Wesley (1999).

13. Morisio, M.: Measurement Processes are Software Too. Journal of Systems and Soft-
ware, vol 49(1), December (1999).

14. Perry, D., Porte, A. and Votta, L. Empirical Studies os Software En-gineering: A Road-
map. Future of Software Engineering. Ed:Anthony Finkelstein, ACM, (2000), 345-355.

15. Pfleeger, S.L.: Integrating Process and Measurement. In Software Measurement. A.
Melton (ed). London. International Thomson Computer Press (1996) 53-74

16. Sjoberg, D., Anda, B., Arisholm, E., Dyba, T., Jorgensen, M., Karahasanovic, A., Koren,
E. and Vokác, M. Conducting Realistic Experiments in Software Engineering. Proceed-
ings of the 2002 International Symposium on Empirical Software Engineering
(ISESE’02).

17. Software Engineering Institute (SEI). The Capability Maturity Model: Guidelines for
Improving the Software Process, (1995). In http://www.sei.cmu.edu/cmm/cmm.html

18. Software Engineering Institute (SEI). Capability Maturity Model Integration (CMMISM),
version 1.1. March (2002). In http://www.sei.cmu/cmmi/cmmi.html

19. Software Process Engineering Metamodel Specification; adopted specification, version
1.0. Object Management Group. November (2002). Available in http://cgi.omg.org/cgi-
bin/doc?ptc/02-05-03.

20. Wohlin C., Runeson P., Höst M., Ohlson M., Regnell B. and Wesslén A. Ex-
perimentation in Software Engineering: An Introduction, Kluwer Academic Publishers.
(2000).

21. http://department.obg.cuhk.edu.hk/ResearchSupport/Minimum_correlation.asp

Appendix A

SPM 7. With the SPM shown (Figure 2), you have to perform the following tasks:

Tasks: Part I. Answer the following questions:
Write down the starting hour (indicating hh:mm:ss): ___________
1.- Can the Use Case Specifier participate in Structure the Use Case Model? __
2.- Does Structure the Use Case Model precede to Prototype User Interface?__
3.- Is it necessary to use the product Use Case Detailed like input of the activity
Structure the Use Case Model? __
4.- Is the work product Use Case Model output of Prioritize Use Cases?
5.- When Prototype the User Interface is executed, has the Use Case Detailed prod-
uct already produced? __

158 F. García, F. Ruiz, and M. Piattini

Write down the ending hour (indicating hh:mm:ss): ____________
Tasks: Part II. Carry out the necessary modifications to satisfy the following re-
quirements:
Write down the starting hour (indicating hh:mm:ss): ___________
1.- The activity Detail a Use Case uses the Description of the Architecture like input.
2.- The activity Detail a Use Case is considered not to precede to Structure the Use
Case Model and this last one will be precede by Prototype the User Interface.
3.- After the activity Find Actors and Use Cases is desired to perform a Checking of
the consistence Requisites-Domain, which receives like inputs the Domain Model,
the Use Case Model and an Historical of the Domain. This new activity precedes to
Prioritize Use Cases.
4.- The Verification Group is the responsible for Checking of the consistence Req-
uisites-Domain.
Write down the ending hour (indicating hh:mm:ss): ___________

	1 Introduction
	2 Proposal of Metrics for Software Process Models
	3 Empirical Validation of the Model Level Metrics
	3.1 Definition
	3.2 Planning
	3.3 Operation
	3.4 Analysis and Interpretation
	3.5 Validity Evaluation

	4 Conclusions and Future Work
	Appendix A

